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Determination of Subtraction Terms in 8-Matrix Theory
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A detailed discussion of several points connected with the determination of subtraction constants in S-
matrix theory is made. By considering examples of asymptotic behavior of scattering amplitudes character-
istic of poles and cuts in the angular-momentum plane, explicit formulas for the subtraction functions in
terms of the absorptive part are derived. It is emphasized that it is not necessary for all singularities to
retreat to the left half angular-momentum plane in order for the subtraction functions to be completely
determined. An explicit demonstration, for one example, is given of the fact that for nonpolynomial asymp-
totic behavior of scattering amplitudes in momentum transfer, the partial-wave amplitudes for all physical
angular momenta are generally expected to be linked by analytic continuation in the complex angular-
momentum plane. This property of partial-wave amplitudes is sometimes stated as an S-matrix postulate
and referred to as maximal analyticity of the second degree.

M NE way of stating the problem of subtractions in
dispersion relations is as follows: Suppose that the

absorptive parts D~ and D„in the Mandelstam ampli-
tude are assumed to be given. Then to what extent is the
amplitude in the s channel determined? (This way of
formulating the problem has been utilized by Chew'. )
The answer to this question, which has become greatly
clarified in recent years, depends upon the nature of the
asymptotic behavior of the full amplitude, A (s,t), and
that of D~ and D„in the t and u variables.

In potential scattering with a superposition of
Yukawa potentials, the amplitude is uniquely deter-
mined by D& and D„,for in this case a knowledge of the
absorptive parts is essentially equivalent to a knowledge
of the potential (see Ref. 1).

In the relativistic S matrix, D& and D„canbe com-
puted in terms of mass-shell S-matrix elements and are
often regarded as providing information analogous to
the nonrelativistic potential. ' We have, however, no
guarantee in relativistic problems that undetermined
subtractions may not enter the theory. The important
work. of Froissart has shown that arbitrariness from
subtractions cannot be present above the p wave. ' The
analogy with nonrelativistic problems has encouraged
the hope that relativistic amplitudes are also com-
pletely determined by the "potentials" D& and D„.

This hope has sometimes been stated as a postulate
of S-matrix theory. Such a postulate has recently been
given an elegant formulation within the framework of
the ideas ef complex angular momentum. Chew' ' has
called this principle maximal analyticity of the sec-
ond degree (MASD). MASD requires that the ampli-

*National Science Foundation Postdoctoral Fellow, 1964.' M. Jacob and G. F. Chew, Strong Interaction Physics (W. A.
Benjamin, Inc. , New York, 1964). For another good discussion of
the question of subtractions, see the articles by A. Martin and R.
Oehme in Strong Interactions and High Energy Physics (Oliver and
Boyd, Edin, burgh and London, 1964).' G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961).

3 M. Froissart, Phys. Rev. 123, 1053 (1961).See also A. Martin,
ibid. 129, 1432 (1963), who achieves stronger conclusions than
Froissart in special cases.

4 G. F. Chew, Lawrence Radiation Laboratory Report UCRL-
10'N6 (unpublished).

tude for all values of angular momentum be connected
by analytic continuation. At the present stage, MASD
enters S-matrix theory as a postulate, although subse-
quent developments may show that it follows from other
postulated properties of the S matrix.

It is perhaps worth pointing out the exact relationship
of the present paper to the work of Froissart and
Martin. ' These authors examine the question of sub-
tractions by studying the limitations placed on the
scattering amplitude by unitarity, analyticity, and
crossing symmetry. They are able to conclude that rela-
tively few (sometimes none) of the subtraction terms
can be arbitrary. Subtractions generally have to be
made, but they are determined by the spectral func-
tions. In these discussions polynomial bounds on the
scattering amplitude are assumed, but no assumption is
made about the explicit form of the asymptotic be-
havior. Although most (or all) of the subtraction terms
are, in principle, determined, it is not generally possible
to write down an explicit formula for these subtraction
functions.

In the discussion which follows, we take a different
viewpoint from the one just outlined. We assume an
explicit form for the asymptotic behavior of the ampli-
tude, suggested by certain types of singularities in the
complex angular momentum plane. Unitarity is never
used, but the strong assumption of the exact form of the
asymptotic behavior generally implies explicit formulas
for the subtraction functions (Sec. II) and also leads to
a demonstration that physical partial-wave amplitudes
at lower angular momenta are linked by analytic con-
tinuation to physical partial waves at high angular
momenta (Sec. III).

Special mention is also made here of a point erst
emphasized by Chew and Jones, ' that it is not necessary
for the singularities in the angular-momentum plane to
retreat to the left of the imaginary axis in order for all
subtraction terms to be fully determined. We also show
that cuts in the angular-momentum plane do not appear
to raise any special difhculties in connection with the
determination of subtractions.

' G. F. Chew and C. E. Jones, Phys. Rev. 1BS, 8208 (1964).
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II. DETERMINATION OF SUBTRACTION TERMS

We consider here several types of asymptotic behavior
which may be experienced by the full scattering ampli-
tude. By giving the form of the asymptotic behavior we
are immediately led, in all but one of the examples, to
formulas giving the complete determination of the
subtraction terms by the absorptive parts. The one
example we consider where the subtraction terms are
not completely determined is the well-known case of
polynomial-type behavior.

Although our development in this section proceeds
without explicit use of the complex angular-momentum
plane, it will be recognized that the forms of asymptotic
behavior we consider are the same as would be produced
by certain types of singularities in the angular-mo-
mentum variable.

Our starting point is a fixed energy dispersion relation
for the invariant scattering amplitude:

tN " D, (t',s)
A(s, t)=— dt' + P b, (s)t',

(t')"(t'—t)

s =4(v+1),

t = —2y(1 —cos8) .

Our notation and conventions are as follows: v is the
center-of-mass three-momentum squared; g is the scat-
tering angle in the center-of-mass system; D& is the
absorptive part in the t channel; the bi are subtraction
terms; to is threshold; we consider here elastic scattering
of two spinless particles of unit mass. We have omitted
terms that arise from the absorptive part in the I
channel because such terms in no way modify the
arguments which are to follow. It is to be noted that
Eq. (II.1) is written for fixed s, and if Mandelstam cuts'
enter the problem, there will be no finite value of E
which makes the dispersion integrals converge for all
values of s.

As a first example of the possible asymptotic behavior
of A(s, t), let us suppose that there exists a small
neighborhood of s, where

defined over a neighbor of s values, still the function
b;(s) so defined is an analytic function of s and can, in
principle, be continued to all s values (see, in this
regard, Ref. 3).Thus the subtraction terms b;(s), in this
case, are completely determined by D&. From the point
of view of complex angular-momentum plane, this
example corresponds to the case where all singularities
have retreated to the left half plane.

We consider another example where the subtraction
terms in (II.1) are completely determined. Suppose over
an interval of s that A(s, t) has the following high t

behavior:

A(s, t) ~ P C, (s)t "',
(II.4)

taboo i=1

It is understood that the terms neglected in (II.4)
vanish at high t. The only condition we impose on the
n;(s) is that for some range of s values the n;(s) not be
integers. For the remainder of our discussion, we shall,
for simplicity, consider just one asymptotic term in
(II.4), which we designate C(s)t &' without subscripts.
The generalization to any finite number of similar terms
will be obvious. We then set

where
D, (t,s) = C(s)t.& )+D,(t,s),

D, (t,s) ~ 0.

1 " D, (t',s) tN

A (s,t) =— dt' +-
+'

g f —$ x'

In writing Eq. (II.1), subtractions are clearly required
if Ren(s)) 0. The integer X is to be selected so that

Rem+ 1&1V)Reu.
Thus we have

A(s, t) ~ 0. (II.2)

This just means, of course, that the subtractions made
in (II.1) are unnecessary and that the b;(s) are related
to D, (t,s) by

1 " D, (t',s)
b, (s) =— dt'

(t') '+'
(II.3)

'S. Mandelstam, Nuovo Cimento 30, 1113, 1127, and 1148
(1963).

What has happened here, of course, is that the poly-
nomial in t in Eq. (II.1) had to be canceled by the
integral term, which requirement leads to Eq. (II.3).
Although the integral in (II.3) will, in general, only be

e
—im n]n ]N

sin%A

Requiring a cancellation of the asymptotic integral
powers of t leads at once to a determination of the b, (s):

C(s)
b, (s) = —— dt'(t') ('& '—'.

If we assume that C(s) and n(s) are analytic functions,
then, ~as before, the amplitude becomes determined by

All integrals in (II.6) converge. Now we simply observe
that

tN pp (t~) a—N tp (ti) a N—
dt' = — —-—— dt' . (11.7)—
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D& over a range of s values, and hence it is known
everywhere by analytic continuation. This example, of
course, corresponds to simple poles in the right half
angular-momentum plane.

This last example may be compared with a discussion
by Chew, Frautschi, and Mandelstam, ' where they
indicate how an amplitude with the same type Regge-
pole behavior may be completely determined by the
absorptive part. They, however, in order to de6ne
integrals without introducing subtraction terms, assume
that Reo, &0 for some values of s. This makes the case
they consider really correspond to the first example
given in this section. We note that in our last example no
assumption was made that Rem be less than zero for
any s.

As a further example, we consider an integral super-
position of power behaviors producing the asymptotic
behavior

sufBce for all values of s. It is interesting to note that
this state of affairs has not posed a problem here, for we
only need assume the validity of dispersion relations
(II.1) over a small neighborhood of s values in order to
define the amplitude completely.

From these examples, it is easy to conclude that the
possibility of a complete determination of the subtrac-
tion terms b, (s) in terms of the absorptive part D~(t,s)
is closely connected to the asymptotic behavior of the
amplitude A(s, t) in momentum transfer t It .is im-

portant to demonstrate the failure of Dt to determine
the b, (s) under still another type of asymptotic t be-
havior. For this point, it will be convenient to rewrite
the subtraction terms using Legendre polynomials as
follows:

X—'i N—i '

P b, (s)t'= P (2l+1)e~(s)Pt~ 1+—
~
. (II.12)

lM 2ui

A (s,l) —+ C(s) dn g(a)t +vanishing terms,
t

D((t,s) —+ C(s) dn g(n)t,

C(s)
b, (s) =— dk' der g(n) (t') —' ' (II.11)

This last example is a type of asymptotic behavior
corresponding to a cut in the angular-momentum plane
with branchpoints at l=A and l=B (see, in this con-
nection, Ref. 8). As mentioned earlier, the cuts proposed
by Mandelstam' do not restrict their movements to the
left of some given vertical line in the angular-momentum
plane for all values of s in the physical sheet. This means
that, generally, a finite number of subtractions will not

' G. F. Chew, S. C. Frautschi, and S. Mandelstam, Phys. Rev.
126, 1202 (1962). See also R. Blankenbecler and M. L. Goldberger
$bAS. 126, 766 (1962).

M. Froissart, High Energy Properties of the Mandelstam
Representation, Seminar on Theoretical Physics, (International
Atomic Energy Commission, Trieste, 1962).

where g(rr) is assumed to be real over the contour from
3 toB.

Again we can determine the subtraction terms b, (s)
by the general procedure following Eq. (II.6). In this,
case the equation comparable to (II.7) is

B

drr g(n) (1')
t, t' —t

e
—sea B

der g(n)l
sin%0!

tN tp dti B

dn g(n)t . (11.10)
0

Thus we have

Suppose that we assume A(s, t) has a term in its
asymptotic behavior proportional to P &,(1+tj2v), where
lo is a positive integer or zero. That is to say,

A (s,t) ——- const/1+ (t/2v)$"
s fixed, t~ca

+other terms. (II.13)

The important part of the assumption is that the "other
terms" do not cancel the erst term in (II.13).Now it is
clear that our previous arguments cannot be repeated.
The cancellation mechanism, which operated before be-
tween the polynomial subtraction terms and the integral
terms over D&, is no longer in force, and loth partial
wave cannot be determined from D~(t,s).

To summarize, we have seen that certain assumptions
about the asymptotic behavior of the amplitude in the
momentum-transfer t lead to a complete determination
of all subtraction terms b;(s) in terms of the absorptive
part D, (l,s). However, if the asymptotic behavior of the
amplitude in the t variable is polynomial type, the
determination is not possible. ' Although our discussion
has been based upon a few isolated examples, the follow-
ing generalization seems fairly obvious: If the asymptotic
behavior of the amplitude in t is bolmded by but not
equal to polynomial behavior for some neighborhood of
s values, then certainly, for a very wide class of such
behaviors, the functions b;(s) become completely de-
termined in terms of D~(l,s). We emphasize several
points in connection with our results: (1)For a complete
determination of the b, (s), it is not necessary to require
that D~(t,s) vanish at high t for some values of s as was
assumed in our first example. (2) In order to give an

~ It was pointed out to the author by Professor K. A. Johnson
that asymptotic t behavior involving an essential singularity at
iniety (such as e t) is obviously another type in which subtrac-
tion terms cannot be determined or even an ordinary dispersion
relation written for the amplitude. There seem to be, however, no
suggestions at presen't that such a behavior might be physically
realized.
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explicit formula for the determination of the b, (s) such
as (II.8), it is necessary to know the explicit form of the
asymptotic behavior.

III. MAXIMAL ANALYTICITY OF THE
SECOND DEGREE

In this section, we illustrate the link between our
preceding discussion and MASD. As an example, we
assume asymptotic t behavior of the form (II.4) and
(II.S). Our goal is to show that if the asymptotic be-
havior is of this form, then the low-lying angular
momentum amplitudes are determined by analytic con-
tinuation from high-angular momenta. On the other
hand, if the asymptotic behavior includes polynomial
terms of the type (II.12), then the actual and inter-
polated partial-wave amplitudes for l= lp will not be the
same. That an agreement of the actual and interpolated
partial-wave amplitudes implies the absence of asymp-
totic terms of the form (II.13) has been previously
demonstrated. ' VVe give here a demonstration of the
converse statement: namely, the absence of polynomial
terms implying agreement of the actual and interpolated
amplitudes. That the actual physical partial-wave
amplitude should agree with the amplitude analytically
continued from a region of high Rel is the statement of
MASD.

Our starting point is Eq. (II.6). We define the partial-
wave amplitude in the usual way according to

+1

A(s, l) =— dz Pi(z)A/s, —2v(1 —z)). (III.1)
2 1

If l) N, then it is easy to deduce from Eq. (II.6) that

via Eq. (III.2), because the integral over t i'l will cease
to be defined. In what follows, we shall give explicit
formulas for doing the continuation.

We now do the projection (III.1) in the case with
l= lp, where ls is a physical value (positive integer) less
than N. Utilizing Eqs. (II.6) and (II.12) and omitting
the term which includes D~, we arrive, after some
manipulation, at the result

"dt'
A (,l.)=- —(-()(t').&'

0 2v

f t ) i &=d;(ls,s)
x Qi.l

1+—
I

—2 —,.
2v) ~=i~i (t') ~

+ai(s)bii„ is&1K. (III.3)

where the d;(ls, s) are coefficients of an asymptotic ex-
pansion of Qi(1+t'/2v) in t' and bi&, is the ordinary
Kronecker delta. It will be seen that the integral in Eq.
(III.3) converges, while, since ls&N, the integral in
(III.2) does not converge. The convergence of terms
appearing in Eq. (III.3) was assured, for (III.3) was
derived from (III.1) which is clearly convergent and
well defined.

The next step is to begin with Eq. (III.2), which is
dined for Rel& S, and analytically continue in l down
to the point l= lp, so that the result of this continuation
procedure may be compared with (III.3). In order to
accomplish the continuation of (III.2), we use a trick
first employed by Barut and Zwanziger. "Since we are
only interested in the continuation as far down as l= lp,

we write"

—Q, I
1+—IL),(t,.)

z
„

2v k 2v)

1 "dt' t' t'
y+- —Q I

1+—I(:( )(t')",
gs 2v k 2v)

Rel) N, (III.2)

where Qi is a Legendre function of the second kind. The
asymptotic behavior of D& is such that the Grst integral
in (III.2) converges for all physical l values, so we shall
often omit it in the equations that follow. It will be
recognized that Eq. (III.2) just represents the well-
known unique Froissart-Gribov' amplitude, which
coincides with the physical partial-wave amplitudes for
l&X and is a holomorphic function of l for Rel&X
(some range of s values is implied by this statement).

Unless there are natural boundaries in l, the ampli-
tude in (III.2) can be continued to values with Rel&N.
One, of course, cannot make the continuation directly

'o M. Froissart, Report to the La Jolla Conference on Theo-
retical Physics, June 1961 (unpublished) and V. N. Gribov, Zh.
Eksperim. i Teor. Fiz. 41, 667 and 1962 (1961). t English transl. :
Soviet Phys. —JETP 14, 478 and 1395 (1962)g.

1 ~=~ is td, (l,s)--
QI1+—I= QI1+—I-,

2vl k 2v) (t') '+' ~'-o (t') ~'

1 ~-~ i~i d; (l,s)-
(III.4)

(t') '+' ~ (t')'

The term of (III.4) enclosed in square brackets is so
constructed that the asymptotic powers of Qi in t' are
cancelled in such a way that, when l=lp, the bracketed
expression behaves as 1/(t')~+' for large t'; for Rel) ls,
the expression is even more convergent. The reader will
notice a similarity between the bracketed expressions in
Eqs. (III.3) and (III.4); in fact, the two expressions are
identical when l=lp, a fact which will be exploited in
what follows. However, beyond this the expressions are
quite different in their general properties. For example,
the bracketed expression in (III.4) is an analytic func-
tion of l, while the corresponding expression in (III.3)
is not an analytic function of lp because lp appears as a
discrete index in the latter.

We now insert (III.4) into (III.2) to obtain (omitting,

"A. O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962).
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as betore, the D( te™):
1

A(s, l) =—
&=&(&—(o—i Z&'(i&s)"dt'- (—Qil &+ ) (, &ri;=, o'&'—(0 2V 2p

1
)(C(s)(t ) +

2 (t&) (+i

~here from (II.g) we have

toC sb()=-—
—C(.) (ho) . (111.9)

o'(s) —i

tion of the uantitiesThus all that remains is an examination)

C(s t
j N (g——i d&. l&s

(h')'
0

—4v

dh P(,
(
1+—)t'

2v&
(III.10)

arne is simple: The 6rst integral term in

equal to the following expression:

clear that the quantity (III.10) due to
d 1 1 11ro erties of Legen re p
th id t,itvanish for i(l0. For i&l0, we use e i

1 +' ds'
Q( (s) = ——,~(o(s')

2 ] s s
to infer

(o i Z, (l,s-) C'(s)to

2+v ~—l—j
0

(III.6)
2 —4v

t &(

dh E(oi 1+—it'+(o=d, (io,s),
2()

i =0, 1, 2, . '(III.11)
(III.5) and doing someg

vugg ing1' over the summation in ices, we o

I%I

1 dt'd '- t' o=&(( d~ (~i(lo&s)
A (s&&=— —

Q, „(&
to 2P

t=N—(o—1 d&(l&s)
x C( )(t')-

C(s)ho-' '
X (III.7)

n —l0—j
over the A is a reminder that this de-where the tilde over t e is s de

at of (III.3). We now proceed to"y
show thatA(s&lo)= ( & o . s.
(III.4) and recalling the definitions o; s
we see by inspection that

d, (lo,s)=d; ( i(lo,s),

1 +1

a, (s)=-
2 1

N—1

d»(o(s) 2 b'(s)Lt(s) j'
i=0

—P(oi 1+—
i Q b, (s)h', (III.S)

2(& ( 2(&j; o

and thus we ghave a reernen ot f the integral terms in
and (III.7). To compare e rth remaining terms,

. (III.3) is given bywe recall that a(o(s) in Eq. . i

Combining Eqs. (III.S——(III.11) we arrive at the result

d, (l, ), (III.12)
2 ()—' —lo

nt between Eqs.which provi es e cd th complete agreement b
III.7) and (III.3) and proves that

A (s,lo) =A (s,l(&).

e roved that the amplitude obtained byThus, wehave prove t a
ation from hig an

strai htforward pro~ec ion a
that the asymptotic0 er the assumption a

, d h."-h.h.--.am litude in t is o e or
type of behavior wiill be recognize as a

t in the right half /when Regge pooles only are present in e ri
h to imply that this ise do not, however, wis o im

e ll esult in an agreement be-

p

hh bbl
t er sin ularity s ruc

a natural boundary w ic pro
b ddb ol o 1. Woccur f thea p' blitude is boun e y

h t of Regge-pole behavior.
urse only given the exp ici

1 d interpolated partial-
lest situation, t a o

lt that the physica an in
wave amplitudes agree un

1
' t t' 1 empt Inever theresu tisno e
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and polynomial boundedness are a
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introduction), Martin' has shown that, in some cases, all
partial-wave amplitudes become uniquely determined
by the spectral functions. However, even in these cases
he is not able to conclude that the s- and p-wave physi-
cal amplitudes agree with the partial-wave amplitude
analytically continued from high l. Our example, under
the assumption of an explicit form for the high mo-
mentum-transfer has been explicitly shown to have this
property.

As a anal remark, we mention the fact' that if the
asymptotic behavior of the amplitude is of polynomial
type, then it would be impossible to have agreement
between the interpolated and the physical partial-wave

amplitude. It is clear that terms of polynomial type
introduce Kronecker deltas into the amplitude which
give contributions at discrete values of angular mo-
mentum, which contributions cannot be reproduced by
a smooth connection with higher angular momenta.
This gives the important result' that MASD forbids
polynomial asymptotic behavior of the scattering ampli-
tude in t.
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Bounds for a Class of Bethe-Salpeter Amplitudes*

GEQRGE TIKTQPQULos AND S. B. TREIMAN

Palmer Physical Laboratory, Princeton University, Princeton, Kern Jersey
(Received 12 November 1964)

For a certain wide class of kernels involving trilinear coupling of scalar particles, the absorptive part of
the Bethe-Salpeter amplitude for forward scattering is bounded from above and below. The bounds are ex-
pressed in the form B&s &&~A(s) &~B&S ', where s is the squared c.m. energy and B& and B2 are positive con-
stants. Expressions for the exponents aI and u2 are given as functions of the coupling constant g. For the
straight ladder model, aI and a2 coincide for all values of g, the common expression agreeing with an exact
result of Nakanishi. For the more complicated models, aI and n2 do not in general coincide. However, in the
strong-coupling limit g ~~, we 6nd that a2/al —+ 1; moreover, the common asymptotic behavior
~I 2

—+, „g/Arm is the same for all the models, including the straight-ladder model.

I. INTRODUCTION

ISING techniques discussed in two earlier papers, "
we consider here the problem of setting upper and

lower bounds on the absorptive part of the forward
elastic scattering amplitude for a certain wide class of
ladder-like models. Ke deal with theories involving
scalar particles which couple trilinearly.

In general, the absorptive amplitude A satis6es a
Bethe-Salpeter equation, as symbolized in Fig. 1. For
an inclusive treatment, one would have to take for the
kernel E a sum over all possible irreducible diagrams;
and for the Born term A~ g, similar sum, evaluated on
the mass shell k'=0. But as we shall understand the
term here, a particular model is characterized by the

FIG. 1. Notation
for the integral equa-
tion.

*Work supported by the U. S. Air Force OfIIIce of Research,
Air Research and Development Command,

'G. Tiktopoulos and S. B. Treiman, Phys. Rev. 135, 3711
(1964).' G. Tiktopoulos and S. 3. Treiman, Phys. Rev. 136, 31217
(1964).

FIG. 2. Examples
of irreducible dia-
grams. (c)

choice of a particular one of the irreducible diagrams
for the kernel E and corresponding Born term Ag. The
class of such models which will come under discussion
here is characterized by the examples shown in Fig. 2
for the irreducible kernels. The heavy lines (spinless
"nucleons" ) correspond to particles of mass m, except
for the external nucleons which are taken, for reasons
of kinematic simplicity, to be massless. The wavy lines
represent exchanged particles ("mesons"). In general
terms, the class of irreducible diagrams which we con-
sider consists of those in which each wavy line joins two
solid lines, without further connections (no loops or
self-energy and vertex corrections).

Insofar as the kernel E is concerned, the exchanged
particles are taken to be massless. But in the Born
term A&, which is described by the same diagram as for
E, we suppose that owe of the exchanged particles has
a Gnite mass p. Although we could set @=0 without
embarrassment insofar as the absorptive amplitude is
concerned, we would encounter infrared divergence
troubles for the real part of the amplitude. In order to


